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Transport coefficients for granular media from molecular dynamics simulations

C. Bizon, M. D. Shattuck, J. B. Swift, and Harry L. Swinney
Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712

~Received 3 March 1999!

Under many conditions, macroscopic grains flow like a fluid; kinetic theory predicts continuum equations of
motion for this granular fluid. In order to test the theory, we perform event-driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation,
high densities, and small numbers of particles, we find that continuum theory describes the system well. With
a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due
to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or
velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conduc-
tivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be
used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory,
while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with
increasing inelasticity.@S1063-651X~99!03310-3#

PACS number~s!: 45.70.2n, 66.90.1r, 05.20.Dd, 02.70.Ns
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I. INTRODUCTION

Collections of inelastically colliding macroscopic pa
ticles, when driven sufficiently by an external force, exhi
fluidlike behavior such as flow@1,2# and instabilities similar
to those seen in liquids@3,4#. Although only a small numbe
of particles (102–106) are typically involved in a flow, con-
tinuum methods are popular tools in modeling, becaus
century of fluid dynamics experience can be brought to b
on the problem. With continuum equations velocity profil
and transfer rates can be calculated, and stability anal
performed. Often, plausible continuum equations are sim
posited, but these equations typically contain unmeasur
free parameters. A more rigorous approach derives c
tinuum equations from the kinetic theory of dissipative ga
@5–7#. In principle, a closed system of partial differenti
equations results, analogous to the Navier-Stokes equat
with all transport coefficients given.

However, the continuum equations for granular media
not share the stature of their molecular fluid analogs.
both grains and molecules, the general form of the equat
is not in question, but the constitutive equations relat
fluxes of momentum and energy to gradients may differ fr
the simple cases of Newton’s viscosity law and Fourie
heat law. The transport coefficients of liquids are not ro
tinely calculated from kinetic theory, but are measured
perimentally; such measurements have not been carried
for granular media, where the granular temperature~the ki-
netic energy associated with the fluctuational velocities
particles! is difficult to control and difficult to measure. In
addition, the small number of particles, long mean free pa
and the dissipative nature of the medium have led some
searchers to the conclusion that continuum approaches
doomed to failure@8,9#.

As a result, the central question remains open:Can con-
tinuum equations, derived from kinetic theory and supp
mented by measurements, model rapid granular flows to
same level that Navier-Stokes equations model the flow
liquids? Molecular dynamics simulations will play a crucia
PRE 601063-651X/99/60~4!/4340~12!/$15.00
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role in answering this question, since the data they prov
can be used to quantitatively test the assumptions and
results of kinetic theory.

The main assumptions@5–7#, which we will elucidate in
Sec. II, are~1! single-particle velocity distribution function
are nearly Boltzmann,~2! molecular chaos–particle veloc
ties are uncorrelated, and~3! particle positions are correlate
in accord with Eq.~5!, the Carnahan and Starling relation fo
elastic particles.

The main results, also discussed further in Sec. II, are~1!
the equation of state@Eq. ~13!#, ~2! the constitutive relations
@Newton’s stress law and Fourier’s heat law—Eqs.~11! and
~12!#, and~3! the values of the shear viscositym, the thermal
conductivityk, and the loss rate of granular temperature d
to inelastic collisions,g @Eqs.~16!, ~17!, and~14!#.

We will use molecular dynamics simulations to test the
points, and to measure the transport coefficients to be use
continuum analyses of granular flows. We have found t
the simulations quantitatively reproduce experiments
standing waves in oscillated granular media, producing
correct wave patterns and wavelengths@10# and secondary
instabilities@4#. With the numerical simulation, we not onl
have access to experimentally unmeasurable quantities@11#,
but we also can study systems that are not experimen
realizable, allowing us to test both the assumptions and
sults of the granular kinetic theory. Once the constitut
relations have been tested and possibly enhanced throug
use of particle simulations, direct comparison between c
tinuum theory and laboratory experiment becomes possi
We compare directly to the results of Ref.@7#, but many of
the kinetic theories are similar in spirit. We do not, howev
consider more sophisticated theories that include long-ra
spatial correlations@12# or recollision effects@13#.

Laboratory tests of granular kinetic theory have not y
proceeded beyond measuring the single-particle velocity
tribution function @14–16#. Simulations that make contac
with kinetic theory have focused mainly on the homog
neous cooling state, a time-dependent state that eventu
becomes spatially inhomogeneous. In those simulatio
long-range velocity correlations develop@17#, and molecular
4340 © 1999 The American Physical Society
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chaos no longer holds. A more sophisticated form of kine
theory, ring kinetic theory, in which correlations in partic
velocity are accounted for, is required for a full descripti
@18#. A simulation on a granular gas between two walls w
different granular temperatures shows that in the quasiela
limit, granular kinetic theory produces good temperature p
files @19#. Finally, a number of simulations have been p
formed on granular media in contact with a heat bath@20–
22# to produce a steady state. In one dimension~1D!, spatial
@20# and velocity @21# correlations can develop, and th
single-particle velocity distributions may be non-Gauss
@22#. Recent results on a randomly driven two-dimensio
system show long-range correlations in good agreement
a mode-coupling theory@12#.

In Sec. III we describe the molecular dynamics simu
tions and the forcing methods. Section IV discusses sim
tions of granular media in which the heat bath is spatia
homogeneous. In that section, we will check the assumpt
about the nature of the single-particle distribution functi
and the correlations of position and velocity, as well as m
suring the equation of state andg. In Sec. V we turn to our
main purpose: allowing the heat bath to vary spatially so t
stationary inhomogeneous states may be induced and
scribed. From these simulations we can study the constitu
relations, the shear viscosity, and the thermal conductiv
Section VI contains concluding remarks.

II. KINETIC THEORY

We begin with a brief review of the kinetic theory o
granular media, which differs only slightly from the kinet
theory of elastic particles as presented in textbooks suc
@23#. Specifically, we discuss kinetic theory as described
Jenkins and Richman@6,7#, but most of the kinetic theorie
in the literature are similar@5,24–26#. The number of par-
ticles in a volume and velocity elementdrdv centered at
position r and velocity v is given by f (1)(r ,v,t)drdv;
f (1)(r ,v,t) is called the single-particle distribution function
Continuum quantities are given as averages overf (1)(r ,v,t).
In particular, the number density, average velocity, a
granular temperature are defined, respectively, as

n~r ,t ![E f (1)~r ,v,t !dv, ~1!

v0~r ,t ![
1

nE f (1)~r ,v,t !vdv, ~2!

T~r ,t ![
1

nDE f (1)~r ,v,t !~v2v0!2dv, ~3!

whereD is the number of dimensions. Note that the granu
temperatureT is not the thermodynamic temperature of t
particles due to the random motions of their molecules,
the analogous kinetic energy due to the random motion
the macroscopic particles themselves.

The evolution of f (1)(r ,v,t) depends on the joint prob
ability distribution, f (2)(r1 ,v1 ,r2 ,v2 ,t); collisions of two
particles change the single-particle distribution. As in m
lecular kinetic theory, Boltzmann’s assumption of molecu
c

tic
-

-

n
l
th

-
a-
y
ns

-

t
e-

ve
y.

as
y

d

r

t
of

-
r

chaos is made, i.e., velocities are assumed to be uncorrel
although for sufficiently dense media, positional correlatio
are allowed:

f (2)~r1 ,v1 ,r2 ,v2 ,t !5g~s,n! f (1)~r2

2s k̂,v1 ,t ! f (1)~r2 ,v2 ,t !, ~4!

where s is the particle radius,k̂ is a unit vector pointing
from the center of particle 1 to the center of particle 2, a
n5 1

4 nps2 is the solid fraction in 2D.
The positional correlations are accounted for throu

g(r ,n), the radial distribution function, which is defined a
the probability of having a pair of particles whose relati
distance lies in the intervalr ,r 1dr, normalized by the prob-
ability for an ideal gas. This function, evaluated at the po
of contactr 5s, gives the increase in the probability of co
lisions due to dense gas~excluded volume! corrections. For
elastic hard disks, spatial correlations are described by
formula of Carnahan and Starling@27#,

GCS~n!5
n~1627n!

16~12n!2 , ~5!

where

G~n![ng~s,n!. ~6!

Equation~5! works well for elastic particles with solid frac
tions below 0.675, where a phase transition takes place@28#,
and is often used in modeling granular media@7#. Equation
~6! is the definition ofG in terms of the~unknown! radial
distribution functiong(r ,n), evaluated atr 5s, while Eq.
~5! is a particular model forG, denoted by the subscript CS

An unforced collection of elastic particles approaches
Boltzmann distribution,

f (1)~r ,v,t !5n~2pT!2D/2e2C2/2T, ~7!

whereC[uv2v0u. Away from equilibrium, the local distri-
bution for elastic particles is nearly Boltzmann. Granular m
dia dissipate energy with each collision, so that the equi
rium state of an unforced granular medium is that of
relative motion. For grains, the single-particle distributi
function is simply assumed to be nearly a Boltzmann dis
bution.

With these assumptions, and the additional assump
that the coefficient of restitutione is only slightly less than 1
~particles are only slightly inelastic!, equations for the con-
tinuum mass, momentum, and energy can be derived
disks in two dimensions@6,7#:

]n

]t
1“•~nv0!50, ~8!

n
]v0

] t
1nv0•¹v052“•P, ~9!

n
]T

]t
1nv0•“T52“•q2P:E2g, ~10!
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whereEi j 5
1
2 (] iv0 j1] jv0i) are the elements of the symm

trized velocity gradient tensorE. The constitutive relation for
the pressure tensorP is Newton’s stress law,

P5~P22l Tr E!I22m@E2~Tr E!I #, ~11!

where Tr denotes trace andI is the unit tensor. For the hea
flux q, the constitutive relation is Fourier’s heat law,

q52k“T. ~12!

The 2D equations close@7# with the equation of state, which
is the ideal gas equation of state with a term that inclu
dense gas and inelastic effects,

P5~4/ps2!nT@11~11e!G~n!#, ~13!

and the predicted values, denoted with a subscript 0, for
temperature loss rate per unit volumeg,

g05
16nG~n!

s3 ~12e2!S T

p D 3/2

, ~14!

and the transport coefficients, which take on the Enskog
ues: the bulk viscosityl,

l05
8nG~n!

ps
AT

p
, ~15!

the shear viscositym,

m05
n

2s F 1

G~n!
121S 11

8

p DG~n!GAT

p
, ~16!

and the thermal conductivityk,

k05
2n

s F 1

G~n!
131S 9

4
1

4

p DG~n!GAT

p
. ~17!

Because of the assumption of near elasticity, the coe
cient of restitution enters only in the equation of state and
the expression for the temperature loss due to inelastic
lisions. To this order, the thermal conductivity and visco
ties predicted by inelastic kinetic theory are the same
those given by the Enskog procedure for elastic disks@29#.

III. DRIVEN GRANULAR MEDIA SIMULATIONS

We perform event-driven simulations@30,31# of a granu-
lar gas in a two-dimensional periodic box of side lengthL
552.6s, in contact with a thermal bath that stochastica
heats particles throughout the volume. Between collisio
particles travel freely. In our model the collisions are insta
taneous and binary; they conserve momentum and diss
energy. Particles are assumed to be frictionless; particle
tion can be incorporated into kinetic theories@24,25#, and
was included in the simulations of oscillated granular me
@10,11,4#, but introduces complications that we wish to avo
for this study.

When particles collide, new velocities are calculated
reversing the component of the relative particle veloc
along the line joining particle centers and multiplying it b
the coefficient of restitutione, which is between 0 and 1. Ife
s
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is independent of collision velocity, a finite time singulari
can occur in the collision frequency, a phenomenon kno
as inelastic collapse@32,33#. In real materials, however, th
coefficient of restitution is a function of collision velocit
@34,35#. To avoid the simulation-ending inelastic collaps
we allow e to vary @36# as

e~vn!5H 12Bvn
b, vn,va

e, vn.va
~18!

wherevn is the component of relative velocity along the lin
joining particle centers~normal to the contact surface!, B
5(12e)(va)2b, b53/4, ande is a constant, chosen to b
0.7. In simulations of oscillated granular media, the resu
are not sensitively dependent onva or b, and e50.7 pro-
duces good agreement with experiment@4,10,11#. In addition
to forestalling collapse, variation ofe allows us to further
probe granular kinetic theory, which assumes thate'1. AsT
varies, the relative collision velocity will vary; hence so w
e, and the relative importance of that assumption can
gauged. At a given temperature, a distribution of collisi
velocities and a corresponding distribution of coefficients
restitution occur. VaryingT varies not only the average valu
of e, but also the amount of deviation around that averag

The variation ine gives rise to a velocity scale that is no
present in the elastic case. All quantities given below
nondimensionalized with the particle diameters and the
crossover velocityva at which the coefficient of restitution
becomes a constant. In particular, the granular temperat
all scale withva

2 .
Because inelastic collisions remove energy from the s

tem, we must constantly add energy to achieve any sor
steady state. The situation is opposite that in simulations
nonequilibrium systems of elastic particles, where the c
stant energy input from the driving must be removed throu
an artificial means@37#.

Stochastic heating is performed in one of three ways:~A!
White noise—random kicksdv are added to particles’ veloci
ties, ~B! Random accelerations—particles accelerate be
tween collisions, and~C! Boltzmann bath—particle veloci-
ties are obliterated and replaced with velocities chosen fr
a Gaussian distribution. We discuss the motivation a
implementation of each in turn.

A. White noise

Williams and MacKintosh@20# introduced white noise as
a thermal bath for dissipative granular media. In their mod
a random velocity is added to each particle’s velocity dur
each time stepDt. The velocities added to each particle a
not correlated with one another, nor are they correlated w
the velocities added in the previousDt. This model has the
advantage that the equation of motion for particles betw
collisions may be written down as the Langevin equation

d2xi

dt2
5z i , ~19!

wherexi is the position of thei th particle andz i is a Gauss-
ian white noise term, i.e.,̂z i(t)z j (t8)&52Fd i j d(t2t8). The
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fact that the heating can be analytically expressed make
inclusion into kinetic theory possible.

This forcing is straightforward to include in our simula
tions. Rather than adding the random kicks to particles a
once, we kick 2r k randomly chosen particles every tim
there is a collision. The numberr k , then, represents the rati
between the rate of kicks and the rate of collisions. If t
kicks are totally random, the center of mass momentum
the system will fluctuate, but we desire that the heat bath
only change the fluctuational velocity, not the mean. To
sure that the mean velocity remains fixed, we apply rand
kicks to r k particles:

vi→vi1udvu r̂ i , 1< i<r k . ~20!

The kicks themselves are all of the same size,udvu, but the
directionsr̂ i are randomly chosen. Then, kicks in the opp
site directions are applied to anotherr k randomly chosen
particles:

vi→vi2udvu r̂ i 2r k
, r k, i<2r k . ~21!

Because each kick requires recalculation of the kick
particle’s collision list, we want to minimize the kick fre
quency. Empirically, we find that our results are independ
of r k for r k>1 andr k(dv)2 constant. This is not surprising
since the average length ofr k randomly oriented kicks of
length dv is Ar kdv, and only the total kick between colli
sions matters when collisions occur. For this reason, we
form most of our simulations withr k51, where the collision
rate equals the kick rate.

B. Random accelerations: The air table model

While white noise forcing has the advantage that it can
incorporated into the kinetic theory relatively easily, it h
the disadvantage that it does not model any particular
system. In most experiments, energy is added to the gran
media through a boundary, causing gradients in the ene
perpendicular to that boundary.

One experimental system is capable of producing hom
geneous steady states, specifically, a collection of pucks
an air table@16,38#. Either due to inhomogeneities in the a
flow or because the pucks are not perfectly parallel to
surface of the table, air flow accelerates the pucks unifor
from one collision to another@16#, which counters the loss o
energy due to inelastic collisions and produces a steady s

In our model of the air table each particle moves unde
uniform acceleration:

ai5a0r̂ i . ~22!

The magnitudes of all particle accelerations,a0, are the
same, but the directions,r̂ i , are randomly and uniformly
chosen. When a collision occurs, 2r k particles are given new
r̂ i . In order to conserve total momentum, we hold the to
acceleration of the particles at zero by giving exactly op
site accelerations to pairs of particles. Initially, each parti
is paired with another, and these are given opposite acce
tions. Later, when one particle is chosen and its accelera
its
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randomized, its partner particle is also given a new accel
tion, opposite to the first particle’s.

Experiments suggest that particles accelerate unifor
from collision to collision, with most of the changes in a
celeration happening at collisions@16#. Therefore,r k51 is
probably a relatively good model for the air table expe
ments. Asr k increases, the particles feel a constant accele
tion over a small temporal range. In the limit thatr k→`, the
model is the same as the white noise model, which is r
independent. In practice, we observe that the distribution
collision velocities for the accelerated particle model a
proaches that for the white noise model atr k'8.

Variation of coefficient of restitution with normal colli
sion velocity is critical for simulations with the accelerate
forcing, since inelastic collapselike collision sequences
more prevalent. A given pair of particles, accelerating
wards one another, can hijack the collision sequence of
gas, rapidly recolliding with one another. If the coefficien
of restitution are constant, this scenario will produce c
lapse. By allowing the collisions to become more elastic
decreasing relative velocities, however, collapse is p
vented; eventually, the relative acceleration will change, a
the particles will move apart. However, the large number
nearly elastic collisions produced by such a sequence ca
the average coefficient of restitution to increase at the high
accelerations, as seen in Fig. 1.

C. The Boltzmann bath

Finally, we introduce a heat bath that approximates
assumption of molecular chaos. Molecular chaos assu
that the velocities of colliding particles are uncorrelated; p
ticles collide, and before they collide with one another aga
they collide with a large number of other particles, losing t
memory of the initial condition. A strong heat bath can pe
form the same function if it replaces the particle velociti
with new velocities chosen from a given distribution. If th
heat bath interacts with the particles often enough, molec
chaos will be guaranteed. While this bath is wholly unphy
cal, it produces a situation in which the kinetic theory
expected to apply exactly; it is a useful check on calcu
tions, and helps to elucidate the role of velocity correlatio

Implementation of the Boltzmann bath is simple. Wh
two particles collide, 2r k particles are randomly chosen an

FIG. 1. Average coefficient of restitution vsT for n50.5, for the
three forcing methods.1: White noise forcing,L: Accelerated
forcing, *: Boltzmann bath. As discussed in the text,T is nondi-
mensionalized withva

2 .
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4344 PRE 60BIZON, SHATTUCK, SWIFT, AND SWINNEY
given velocities chosen from a Boltzmann distribution with
specified temperature.

IV. HOMOGENEOUS FORCING, CORRELATIONS,
AND THE EQUATION OF STATE

With any of the thermal baths just described, we can
up inhomogeneous states by varying the strength or rat
forcing over space. However, in the simplest case we fo
homogeneously. The simulations are performed for a var
of solid fractions, forcing rates, and forcing strengths for
three thermal baths.

The average coefficients of restitution for a number
runs at different temperatures are shown in Fig. 1. Note
at high temperatures, the average coefficient of restitu
begins to rise for the accelerated forcing. This is due to
inelastic collapselike collision sequence described earlier
this forcing. As the magnitude of acceleration increases
produce higher temperatures, these multiple collisions
come more and more important, leading to a large numbe
collisions with very low velocities, and so a high avera
coefficient of restitution.

In the state produced by homogeneous forcing, we
measure the single-particle distribution function, the te
perature produced by the forcing, the pressure, the ra
distribution function, velocity correlations, and loss rate
These quantities can be compared to the corresponding q
tities for elastic simulations and to their assumed or cal
lated values from kinetic theory.

A. Single-particle velocity distributions

The lowest order approximation tof in the kinetic theories
is usually chosen to be a Boltzmann distribution, the form
f for an undriven elastic gas. A driven inelastic gas, althou
it approaches a steady state, is by no means guaranteed
like an undriven elastic gas. Nevertheless, the single-par
distribution functions measured from the simulation are
close to Boltzmann distributions, as seen in Fig. 2.

Overall, the accelerated forcing produces the stronges
viations from Maxwellian, and the Boltzmann bath, uns
prisingly, produces the least deviation. In all cases, the
viations become stronger as the density and tempera
increase~recall that increasing temperature has the same
fect as decreasing the average coefficient of restitutio!.
These deviations tend to flatten the distribution, increas
the probability in the tails and slightly in the peak, and d
creasing the probability in between, as displayed in Fig
Similar types of deviations, but much stronger, have b
observed in experiments on a dilute, vertically oscillat
granular layer@14#.

B. Equation of state and the radial distribution function

The equation of state,~13!, relates the pressure, densit
and temperature to the coefficient of restitution andG(n). As
stated in Sec. II, kinetic theories often use Eq.~13!, with
G(n) given by GCS(n), from Eq. ~5! to calculate pressure
This prescription may fail, then, either due to an incorr
equation of state, or an inappropriate use of the Carna
and Starling relation.
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No matter what the actual form of the equation of sta
we can define a quantity

Gs~n![@~ps2P/4nT!21#/~11e!,

which explicitly satisfies Eq.~13!. If the kinetic theory is
correct, then

Gs~n!5ng~s!, ~23!

FIG. 2. Single-particle distribution functionQ(v8) for ~a! and
~b! white noise forcing,~c! and~d! accelerated forcing, and~e! and
~f! the Boltzmann bath, all withr k51. The velocities are scaled
with the temperatureT, so thatv85v/AT andQ(v8)5Pr(v8)AT,
where Pr(v8) is the probability distribution ofv8. In the left col-
umn, the average temperature is approximately 1.05, and the
fraction is varied (1: n50.1, *: n50.4, L: n50.6, n: n50.8.!
In the right column,n is fixed at 0.5 and the temperature is varie
~b! T51.9331025 (1), 3.1331022 (*), 1.06 (L), 1067 (n). ~d!
T53.031025 (1), 1.131022 (*), 1.05 (L), 256 (n). ~f! T
51.231025 (1), 1.131022 (*), 1.02 (L), 102 (n). The solid
curves are Boltzmann distributions.

FIG. 3. The velocity distribution function Pr ofv85v/AT from
a simulation with accelerated forcing atn50.5 andT51.05, di-
vided by PrMB , a Maxwell-Boltzmann distribution withT51.05.
The two curves are for the two velocity components.
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as defined by Eq.~6!. Testing the equation of state, then,
equivalent to testing Eq.~23!.

Even if Eq.~23! is satisfied, the form of the radial distr
bution function at contact,g(s), may or may not be given by
the Carnahan and Starling value ofGCS(n)/n. Deviations
from Eq.~13! and differences between the elastic and inel
tic radial distribution functions can combine to produ
Gs(n) that is significantly different fromGCS(n), as given
by Eq.~5!. After discussing the method of calculatingGs(n),
we test each of the two effects given above, then show
resulting differences betweenGs(n) andGCS(n).

The virial theorem of mechanics as applied to ha
spheres can be used to calculate the equation of state@39,40#,

PV5NT1
s

2tm
(

c
k̂•Dvi , ~24!

where the sum is over all collisions that occur during t
measurement timetm , Dvi is the change in the velocity o
the i th particle due to the collision, andk̂ is the unit vector
pointing from particle center to particle center. In this for
measurement of pressure reduces to measurement of th
erage particle energy and the average change in the no
velocity at collision.

Using Eq. ~24! to measure pressure, and assuming
equation of state@Eq. ~13!#, we produce a measurement
G(n), denotedGs(n), where the subscripts stands for simu-
lation. This measured value ofG will be used to test Eq.~23!
and compared to the Carnahan and Starling valueGCS(n)
from Eq.~5!. Accurate characterization ofG(n) is important,
because it occurs in the expressions for transport coefficie

To investigate the radial distribution function and t
equation of state, we plotg(r ,n) for a run with white noise
forcing and a run forced with a Boltzmann bath in Fig.
Each plot also indicates the value ofg(s,n) predicted by Eq.
~23!, as well as that predicted by Eq.~5!, respectively testing
the equation of state, and the Carnahan and Starling rela
for the radial distribution function.

While Gs(n)5ng(s,n) for the Boltzmann forcing, this
does not hold for the white noise forcing or the accelera
forcing ~not shown!. Recalling that the Boltzmann driving
represents particles in contact with a highly randomiz
bath, we conclude that this failure of the equation of sta
~13!, is due to incomplete randomization of particle velo
ties through collisions, or in short, a breakdown of molecu
chaos.

FIG. 4. g(r ) at n50.5,T51.05 for ~a! white noise (r k51) and
~b! Boltzmann (r k54) forcing. The dot-dashed lines represent t
value ofg(s) given by the Carnahan and Starling relation Eq.~5!
for n50.5, while the dashed lines showGs(n)/n. For white noise
forcing, g(s,n) coincides with neither line, while for the Boltz
mann bath,g(s,n) coincides withGs(n)/n.
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Furthermore, for neither forcing type does Eq.~5!, the
Carnahan and Starling relation forGCS(n), properly predict
g(s,n); rather, inelastic particles are more likely to b
nearly in contact than elastic particles at the same den
and temperature.

For inelastic particles with each type of forcing,g(s)
.GCS(n)/n. For either white noise or accelerated forcin
inelasticity also undermines the equation of state through
formation of velocity correlations, as shown in the followin
section. These two effects cancel each other to some deg
to assess the final result of usingGCS(n) and the equation of
state, Eq.~13! in models, we calculateGs(n) for the three
types of forcing asn varies. The results are shown in Fig.
For n below'0.675, where elastic particles undergo a pha
transition to an ordered state@28#, the white noise and accel
erated runs produce lowerG than elastic runs; Boltzmann
runs haveGs(n) slightly above the elastic values.

As the temperature decreases,e→1, and the values of
Gs(n) must approach the elastic values. Therefore,Gs(n)
must be temperature dependent; this dependence is show
Fig. 6, along with the value ofGs(n) given by Eq.~5!. As T
decreases, the inelasticGs(n) approaches the elasticG, and
at high T, wheree is independent ofT, Gs(n) becomes in-
dependent ofT. As for the single-particle distributions, th
accelerated forcing shows the greatest deviation from
elastic behavior.

C. Velocity correlations

Molecular chaos is the assumption that particle velocit
are uncorrelated. Knowing the velocity of one of a pair o
colliding particle gives no information about the velocity
the other. In light of the behavior ofG, and simulations that
showed strong velocity correlations@21,17,12#, we measure
velocity-velocity correlation functions.

FIG. 5. ~a! Gs(n) for inelastic hard disks driven by1: white
noise forcing,L: accelerated, and *: Boltzmann forcing. The sol
curve is the Carnahan and Starling relationGCS(n), given by Eq.
~5!. ~b! The ratio ofGs(n) to GCS(n). All runs haver k51 andT
51.05.
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Given two particles, labeled 1 and 2,k̂ is a unit vector
pointing from the center of 1 to the center of 2. Particle 1
velocity then has componentsv1

uu parallel to andv1
' perpen-

dicular to k̂; likewise for particle 2. We define two correla
tion functions

^v1
uuv2

uu&5( v1
uuv2

uu/Nr , ~25!

^v1
'v2

'&5( v1
'v2

'/Nr , ~26!

where the sums are overNr particles such that the distanc
between the two particles is withindr of r. If particle veloci-
ties are uncorrelated,^v1

uuv2
uu& and^v1

'v1
'& will both give zero.

The parallel and perpendicular velocity correlations
plotted in Fig. 7 for the three types of forcing and for elas
particles. Both for particles driven with white noise and a
celerations, strong long-range velocity correlations are
parent, with more correlations produced by the accelera
forcing, consistent with its stronger deviations in the sing
particle velocity distribution and inG. These correlations ar
not small, reaching as much as 40% of the temperature; t
cally, the perpendicular correlations are about one-half of
parallel correlations. Further, these correlations are l
range—they extend the full length of the system. The pa
lel correlations drop to zero atL/2, while the perpendicula
correlations reach zero aroundr 510s, and have a negative
value but zero derivative atL/2. The long-range nature of th
correlation is not due to the size of the computational c
Similar cell-filling correlations were observed in runs 4, 1
and 64 times larger@41#.

For the Boltzmann forcing, some correlations are visi
at very short range; inelastic collisions generate short-ra
velocity correlations, which are destroyed by the heat b
before they can propagate to larger length scales.

D. Loss rate

The loss rate of temperature due to inelastic collisionsg,
divided by the rate calculated from kinetic theory,g0 @see
Eq. ~14!#, is shown for the three forcing methods as a fun
tions of T in Fig. 8~a! andn in Fig. 9~a!. For the calculation

FIG. 6. Gs(n) vs T for n50.5. 1: white noise,L: accelerated,
*: Boltzmann. The dotted line is the Carnahan and Starling rela
GCS(n), given by Eq.~5!, for n50.5.
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of g0 , G was taken from the equation of state measureme
and the averagee within a run was used. Most surprising
the increased loss rate over kinetic theory at relatively l
temperature.

The calculation ofg requires only the evaluation of

n

FIG. 7. Velocity correlations as a function of particle separat
at n50.5,T51.05 for white noise (1), accelerated (L), Boltz-
mann forcing (3), and elastic particles (n). Each curve is built
from around 100 frames separated in time by 100 collisions
particle, anddr 5s/10. Both the elastic particles and the particl
forced with the Boltzmann bath have essentially zero correla
over most of the range. The Boltzmann bath shows positive co
lations only at very short range.

FIG. 8. Temperature dependence of loss rate withn50.5. ~a!
g/g0, where the kinetic theory resultg0 @Eq. ~14!# assumes a
velocity-independent restitution coefficient.~b! g/ge , where ge

takes into account the velocity dependence ofe. The symbols de-
note the type of forcing:1, white noise;L, accelerated;3, Bolt-
zmann. The dotted lines show (Ap/4AT)^vn

2&c /^vn&c for the white
noise and accelerated runs; see Eq.~33!.
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g5
s

2E E 1

4
~12e2!~v12• k̂!3f (2)~v1 ,v2!dVdv1dv2 ,

~27!

wheredV is the angle element. This expression simply a
erages the energy lost per collision,

1

4
~12e2!vn

25
1

4
~12e2!~v12• k̂!2 ~28!

over all possible collisions. The remaining factor
(v12• k̂) takes into account the fact that grains traveling
wards one another more rapidly are more likely to colli
during any given time interval.

The kinetic theory result for the loss rate, Eq.~14!, fol-
lows from the collisional integral, Eq.~27!, under two as-
sumptions: molecular chaos, which ought to be a more
sonable assumption at lower temperatures, and
independence ofe on the variables of integration, so that it
pulled out of the integral as a constant. At lower temperatu
where the variation ofe with vn leads to a distribution ofe at
a given temperature, the second assumption fails. As t
perature drops still farther, the spread ofe reduces, sincee is
bounded from above by 1; at the very lowestT, g does
approachg0.

Substituting the function form ofe(vn), Eq. ~18!, into the
collisional integral, Eq.~27!, assuming molecular chaos, an
performing the integrations, we arrive at an equation fog
5ge that takes into account the variation ofe with vn :

ge5
4nGAT

s3p3/2 @~12e0
2!~va

214T!exp~2va
2/4T!14I #,

~29!

where

I 5211bAT11b/2@G~21 1
2 b!2G~21 1

2 b,va
2/4T!#

2A222bT11b@G~21b!2G~21b,va
2/4T!#, ~30!

FIG. 9. ~a! g/g0 and~b! g/ge versusn at T51.05. The symbols
denote the type of forcing:1, white noise;L, accelerated;3,
Boltzmann.
-

-

a-
e

e,

-

G(a) is the gamma function, andG(a,b) is the incomplete
gamma function. In the limit thatva→0, ge→g0.

Figures 8~b! and 9~b! showg/ge for the same simulations
shown in Figs. 8~a! and 9~a!. Taking the variations ine into
account removes the underestimation ofg. In the revised
picture,g approachesge at low T and at lown, but as either
increases,g drops from the value predicted byge . This is
due to the velocity correlations produced by the inelastic
Locally, particles are moving together, reducing collision v
locities and collision frequencies, thereby reducing the l
rate; see Fig. 10. For the Boltzmann forcing, velocity cor
lations are wiped out, andg is close toge .

Writing g in terms of average quantities makes its dep
dence on the collision velocity more explicit. The loss rate
identically equal to the average energy lost per collisio
^DE&c , times the average collision frequency per volum
f /V,

g5^DE&cf /V5
1

4
~12e2!^vn

2&cf /V, ~31!

where thec subscript denotes an average over collisions, a
assuming again thate is independent of collision velocity
Similarly, the virial equation of state, Eq.~24!, in terms of
average quantities is

P5~4/ps2!nTS 11
Vs

d
f

11e

2
^vn&cD . ~32!

Solving for f in terms of G from Eqs. ~13! and ~32!, and
substituting this into Eq.~31! we obtain

g5
~12e2!G

s

^vn
2&c

^vn&c
nT. ~33!

If the distribution of relative normal velocity at collision i
equal to that predicted by molecular chaos,P(vn)
5(1/2T)vnexp(2vn

2/4T), then ^vn
2&c54T and ^vn&c5ApT,

so thatg5g0 is recovered.

FIG. 10. Probability distribution ofvc8[uv12v2u/AT, the mag-
nitude of relative velocities at collision for different forcings, whi
noise (1), accelerated (L), Boltzmann (3), and for elastic par-
ticles (n), all at n50.5 andT51.05. The solid curve is the distri
bution predicted by uncorrelated collisions between particles c

sen from Boltzmann distributions, (1/2ApT3)vc
2e2vc

2/4T. Positive
velocity correlation of nearby particles causes a reduction in
collision velocities, and hence a reduction ing.
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As seen in Fig. 10, however, the distribution of collisio
velocities is different from the molecular chaos values due
the presence of velocity correlations. To show that this
viation accounts for the remaining difference betweeng and
ge , ^vn

2&c and^vn&c were calculated in the simulations. The
ratio, normalized by the molecular chaos value 4AT/p is
plotted in Figs. 8~b! and 9~b! as dotted lines. The change
the relative collision velocity tracks the change ing, except
for high temperature accelerated runs, in which repea
two-particle collisions become important.

V. INHOMOGENEOUS FORCING
AND TRANSPORT COEFFICIENTS

So far, we have been concerned with homogeneous f
ing. By using applied forcing that varies spatially, we c
induce inhomogeneous steady states. Then, by meas
fluxes, transport coefficients are calculated, and compare
kinetic theory. Inhomogeneous states have only been ca
lated for the accelerated forcings; measurements for the
mogeneous state show that deviations from the elastic
are strongest in this case.

A. Thermal conductivity

Recall that with the accelerated forcing, the direction
the accelerations of particles fluctuated at a fixed rate, bu
magnitude was always the same. To induce a thermal gr
ent in the simulation, we allow the magnitude of the acc
eration to vary in space. Specifically, when the accelera
of a particle is to be rotated, the magnitude of its accelera
is given by

a0@12u~z2 1
2 L !/~ 1

2 L !u#, ~34!

i.e., we apply a linear gradient in the forcing, dependent
one spatial direction (z), peaked in the center of the cell an
falling to zero at the periodic boundary. In order to prese
the center of mass momentum, the partner particle rece
the opposite acceleration, regardless of its position in
cell, as described in Sec. III B.

Under this forcing, a stable thermal profile develops,
seen in Fig. 11. The system reaches a mechanical equ

FIG. 11. Profiles of *:T, h: n, andL: P/5 for inhomogeneous
forcing in which the magnitude of the acceleration depends line
on the distance fromz/L5

1
2 . The pressure is nearly constant,

that the variation inT induces a variation inn through the equation
of state. For this run, the average solid fraction is 0.75.
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rium; the pressure is nearly constant inz. ConstantP and
varyingT imply varyingn through the equation of state, an
this variation is observed.

The cell is divided into 50 slabs alongz for measurement
purposes; for each slab, snapshots allow calculation of
averageT and n within. Because the pressure may in pri
ciple vary over space, its measurement using the virial fa
Pressure is measured at the interfaces between the slab
keeping track of the normal~z! momentum flux through
these boundaries, both due to particles freely travel
through them, and due to collisions between particles tha
in different slabs. As in Sec. IV D,G is calculated from Eq.
~13! using the measured pressure. In addition, the ene
added due to the forcing and the energy lost due to inela
collisions are separately accounted for for each slab.
difference between the energy gain and loss in a given
must, in a steady state, be made up for by the differenc
energy flux through its two boundaries, so that the net rate
change of the energy in the slab is zero. Assuming that
energy flux through the line atz5(0,L) is zero due to sym-
metry allows calculation ofqz , the heat flux through each
slab boundary; see Fig. 12.

Onceqz and]T/]z are calculated, Fourier’s heat law, E
~12!, can be used to calculate the thermal conductivityk.
The results of many simulations, holding the averagen at
0.75, but varyinga0 in Eq. ~34! and therefore the size of th
thermal gradient, are shown in Fig. 13, and are compare
the result of Enskog theory, as given by Eq.~17!. At low
temperatures, Enskog theory does a good job predictingk.

ly

FIG. 12. The thermal gradient (3) and heat flux (n) for the run
shown in Fig. 11.

FIG. 13. Ratio ofk measured from simulations tok0 from En-
skog theory@Eq. ~17!#. Each symbol denotes a different run, but f
each run, the average solid fraction is 0.75.
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However, as the temperature increases ande(vn) decreases
Enskog theory does worse; at the highest temperatures,
skog theory overestimates the thermal conductivity by a f
tor of 2.

Note that this calculation does not test Fourier’s la
rather we assume that Fourier’s law is correct, and use
calculatek. Analysis based on closures of the Boltzma
equation predicts a term in the heat flux proportional to
density gradient@42#. If such a term had a sizable magnitud
and were ignored, it would cause a reduction in the obser
k.

B. Shear viscosity

Spatial inhomogeneity in the magnitude of the forcing l
to a stationary inhomogeneous temperature field, allow
measurement of heat flux and thermal conductivity; spa
inhomogeneity in the mean of one forcing component le
to a stationary inhomogeneous velocity field, allowing me
surement of the momentum flux and the shear viscosity
particular, particle accelerations are chosen according to

ay5a0@0.01 sin~2pz/L !1c0#, ~35!

az5a0c1 , ~36!

where c0 and c1 are numbers chosen randomly from
Gaussian distribution with zero mean and standard devia
of 1.

This forcing produces steady states with velocity, te
perature, density, and stress fields like that shown in Fig.
The velocity profile is nearly sinusoidal inz, and the tem-
perature, pressure, and solid fraction are essentially inde
dent ofz. In the simulations discussed so far, we have o
considered the scalar quantityT5Š(v2^v&)2

‹/D, whereD is
the number of dimensions and the^ & denote averages ove
particles. This temperature is more generally the trace of
temperature tensor:

Ti j 5Š~v i2^v i&!~v j2^v j&!‹, ~37!

where i , j range over the directions, andv i denotes thei th
component of the velocity. In principle,Tyy need not equa
Tzz if the rate at which fluctuational energy is traded betwe
the directions is slower than the rate at which it is add
anisotropically; such is the case in a vertically oscillat
granular layer, where vertical fluctuational energy can

FIG. 14. Average velocity in they direction as a function ofz at
T50.21, n50.6. The solid line is sinusoidal.
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twice that of the horizontal. Introducing a bias in the acc
eration of only 1%, however, does not introduce anisotro
into T; for larger shear rates this is not the case. To study
simplest case, we restrict our simulations to biases of 1%

Due to their dissipative nature, many granular flows a
supersonic. In supersonic shear flow, the nearly parallel
ticle paths lead to extremely long mean free paths, cas
doubt on a continuum approach@8#. A small bias in the ac-
celeration allows the shear flows to remain subsonic, so
mean free paths remain smaller than the system size.

In Sec. V A we described calculation of the pressure
measuring the normal momentum flux through planes. M
suring the tangential flux through the planes, and introduc
a second set of planes orthogonal to the first, allows ca
lation of the full four-component pressure tensor. As seen
Fig. 15, the pressure tensor is anisotropic even thoughT is
isotropic; the anisotropy increases asT increases, ore de-
creases. Fore'1, the stress difference is approximately pr
portional to 12e, but the variation ine within a given run
probably plays a role, as it did in the loss rate; see Fig.
For these runs,G is calculated from Eq.~13! using the trace
of the measured pressure tensor.

For each run at fixedT, we can test Newton’s viscosity
law,

Pyz52m
]vy

]z
, ~38!

FIG. 16. Theyz component of the pressure tensor versus
corresponding velocity derivative for the run of Fig. 14. The slo
of the best fit line is2m.

FIG. 15. Normal stress difference divided by pressure as a fu
tion of 12e. The line has slope 1.
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where the viscositym is a constant of proportionality. A
typical result is shown in Fig. 16, where the linear relation
Eq. ~38! is shown to hold. The slopes of these curves th
provide values form which can be compared to the Ensko
result from Eq.~16!; the results are shown in Fig. 17.

Unlike the loss rate and thermal conductivity, we find th
the Enskog theory underestimates the shear viscosit
lower temperatures. However, the trend of decreasing tr
port with increasingT is the same. Even for elastic particle
Enskog theory is not expected to work to arbitrarily hi
solid fractions; as density increases, deviations from Ens
theory are expected. As the inelasticity of particles increa
velocity correlations increase, reducing collisional mome
tum transport and lowering the viscosity.

VI. CONCLUSION

Volumetric driving of granular media leads to nearly s
tionary states that are amenable to comparison with kin
theory, allowing us to test the six points of kinetic theo
listed in Sec. I. Volumetric driving is atypical; most granul
systems are forced through a boundary. However, the
tionary states achieved here are the simplest testing gro
for kinetic theory, and provide an upper bound on the ap
cability of kinetic theories in the style of Jenkins and Ric
man @5–7,25,26# to real systems.

Given that many of our simulations involve coefficients
restitution that are not near 1, the general level of agreem
with kinetic theory is surprisingly good, suggesting that co
tinuum approaches to dissipative granular media are cap
not only of qualitative, but also quantitative descriptions
real systems. We now discuss each of the six points in t

Single-particle distribution functions are nearly Bolt
mann. For all forcing types, temperatures~coefficients of res-
titution!, and densities, the single-particle distribution fun
tions are close to Boltzmann distributions~Fig. 2!. The
deviations from Gaussian~Fig. 3! are consistent with bu
much smaller than those seen in experiments on thin (,1
layer deep! oscillated granular media@14#. In those experi-
ments, deviations appear to be due to spontaneous sp
variations in temperature that are not taken into accoun
the analysis@43#; such variations become large for coolin
unforced granular media. The smaller deviations exhibited
our simulations may represent smaller temperature fluc
tions.

FIG. 17. Viscosity, normalized by the Enskog valuem0, as a
function of T, for n50.6.
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Particle velocities are correlated.Standard kinetic theory
assumes molecular chaos: particle velocities are unco
lated. In our simulations, as in simulations of cooling gran
lar media@17#, strong velocity correlations~Fig. 7! with a
characteristic vortex structure@41# develop. In the steady
state, these correlations extend over the entire cell. Molec
chaos is not required for kinetic theory, but a closure for
kinetic equation is critical. Similar considerations have l
van Noijeet al. @13# to apply ring kinetic theory@44#, which
allows for correlations in particle velocities, to a granul
system.

Spatial correlations are stronger than predicted by t
Carnahan and Starling relation@Eq. ~5!#. Even for simula-
tions using the Boltzmann bath, in which velocity correl
tions are removed, the effect of inelasticity is to increase
amount of spatial correlation atr 5s @Fig. 4~b!#. In other
words, particles are more likely in the inelastic case to
close to one another than elastic particles in the same t
modynamic state. The size of this effect is dependent on
inelasticity, but can be greater than 15%.

The equation of state overestimates the collisional con
bution to pressure because it ignores velocity correlatio
The factor in the equation of state describing the contribut
from collisions,Gs(n), as calculated from the measureme
of pressure and the equation of state, is smaller for wh
noise and acceleration forcings than that predicted by
Carnahan and Starling relation@Eqs. ~5! and ~6!#, denoted
GCS(n) ~Fig. 5!. In turn, GCS(n) is smaller than the actua
G(n)[ng(n), as discussed in the previous paragraph. B
cause velocity correlations were ignored in the derivation
the equation of state~13!, the pressure due to collisions th
G describes is overestimated. To some degree, the incre
positional correlation and increased velocity correlati
work against one another; the first increases the collis
frequency, while the latter decreases it. The net result is
the Gs(n) from the pressure measurement is closer to C
nahan and Starling, Eq.~5!, GCS(n) than if there were only
velocity correlations@Fig. 4~a!#.

Newton’s stress law works well for low stress.Even at the
highest inelasticity,e50.7, no deviations from a linear rela
tion between stress and strain rate@Eq. ~11!# were observed
~Fig. 16!. However, in order to keep the temperature isot
pic, we have limited ourselves to cases in whichv2,T;
many flows of interest are supersonic, with average velo
ties much larger thanAT. Becausek depends onT, and
therefore on position, Fourier’s heat law was not tested in
same manner that Newton’s viscosity law was.

Temperature loss rateg and thermal conductivityk are
reduced by inelasticity, while shear viscositym is predicted
relatively well by Enskog theory.For increasing inelasticity
or density in homogeneously forced runs, velocity corre
tions also increase. As a consequence, the relative colli
velocity decreases~Fig. 10!, leading to a reduction in the
temperature loss rate due to inelastic collisions@Figs. 8~b!
and 9~b!#. In the most severe cases examined, once corre
for variations ine, this deviation could be as high as 20%
Inhomogeneously forced runs allowed calculation ofm, and,
assuming Fourier’s law,k; m never deviated from the pre
diction of Enskog theory by more than 15%~Fig. 17!, while
k was found to be smaller than predicted by a factor of 2
high inelasticities~Fig. 13!. This differential success sug
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gests that velocity correlations, which should be presen
both cases, are not responsible for the large reduction ik.
Rather, the inelasticity itself may be the cause. Ens
theory, applied to granular media, assumes thate'1; the
values ofk0 and m0 are the same as those for elastic p
ticles. When grains collide, energy is dissipated, so that
amount transported collisionally is necessarily reduced ae
decreases. On the other hand, momentum is still conser
so thatm is relatively unaffected. Also, some deviation fro
Enskog theory is possible due to a term in the heat fl
proportional to density gradients.

The results described above suggest a number of ave
for future research. First, measurements of viscosity sho
be extended into the supersonic regime. Second, more e
sive calculations of thermal conductivity at different den
ties, and with different spatial forcings, should be underta
to ascertain the role of density gradients. Third, tim
da
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dependent calculations should be performed, allowing m
surement of the bulk viscosity. Such calculations should a
provide measurements of the frequency dependence of
transport coefficients, which may be relevant for oscillat
granular media. Fourth, the granular continuum equati
can be used to perform stability calculations on proble
such as vertically oscillated granular media@45,46#. Finally,
new forcing geometries should be explored, allowing dir
comparison between particle simulations, continuum th
ries, and experiments.
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