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Transport coefficients for granular media from molecular dynamics simulations
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Under many conditions, macroscopic grains flow like a fluid; kinetic theory predicts continuum equations of
motion for this granular fluid. In order to test the theory, we perform event-driven molecular simulations of a
two-dimensional gas of inelastic hard disks, driven by contact with a heat bath. Even for strong dissipation,
high densities, and small numbers of particles, we find that continuum theory describes the system well. With
a bath that heats the gas homogeneously, strong velocity correlations produce a slightly smaller energy loss due
to inelastic collisions than that predicted by kinetic theory. With an inhomogeneous heat bath, thermal or
velocity gradients are induced. Determination of the resulting fluxes allows calculation of the thermal conduc-
tivity and shear viscosity, which are compared to the predictions of granular kinetic theory, and which can be
used in continuum modeling of granular flows. The shear viscosity is close to the prediction of kinetic theory,
while the thermal conductivity can be overestimated by a factor of 2; in each case, transport is lowered with
increasing inelasticity.S1063-651X%99)03310-3

PACS numbe(s): 45.70—n, 66.90+r, 05.20.Dd, 02.70.Ns

I. INTRODUCTION role in answering this question, since the data they provide
can be used to quantitatively test the assumptions and the
Collections of inelastically colliding macroscopic par- results of kinetic theory. . _ . .
ticles, when driven sufficiently by an external force, exhibit _ 1he main assumptior{$—7], which we will elucidate in
fluidlike behavior such as flowd,2] and instabilities similar ~ S€C- !, ar&(l) single-particle velocity distribution functions

to those seen in liquidgd,4]. Although only a small number &€ nearly Boltzmann(2) molecular chaos—particle veloci-
of particles (18—1F) are typically involved in a flow, con- ties are uncorrelated, arf@) particle positions are correlated

. . . in accord with Eq(5), the Carnahan and Starling relation for
tinuum methods are popular tools in modeling, because 8astic particles

century of fluid dynamics experience can be brought to bear The main results, also discussed further in Sec. I1(&re

on the problem. With continuum equations velocity profilesy, o oquation of statiEq. (13)], (2) the constitutive relations
and transfer rates can be calculated, and stability a”alys‘fﬁlewton's stress law and Fourier's heat lav—E@s) and

performed. Often, plausible continuum equations are simplxlz)], and(3) the values of the shear viscosjty the thermal
posited, but these equations typically contain unmeasurablesnductivity , and the loss rate of granular temperature due
free parameters. A more rigorous approach derives cong inelastic collisionsy [Egs.(16), (17), and (14)].
tinuum equations from the kinetic theory of dissipative gases \ve will use molecular dynamics simulations to test these
[5-7]. In principle, a closed system of partial differential points, and to measure the transport coefficients to be used in
equations results, analogous to the Navier-Stokes equationsontinuum analyses of granular flows. We have found that
with all transport coefficients given. the simulations quantitatively reproduce experiments on
However, the continuum equations for granular media dastanding waves in oscillated granular media, producing the
not share the stature of their molecular fluid analogs. Fotorrect wave patterns and wavelengfi] and secondary
both grains and molecules, the general form of the equationisistabilities[4]. With the numerical simulation, we not only
is not in question, but the constitutive equations relatinghave access to experimentally unmeasurable quantitigs
fluxes of momentum and energy to gradients may differ fromput we also can study systems that are not experimentally
the simple cases of Newton’s viscosity law and Fourier'srealizable, allowing us to test both the assumptions and re-
heat law. The transport coefficients of liquids are not rou-sults of the granular kinetic theory. Once the constitutive
tinely calculated from kinetic theory, but are measured exrelations have been tested and possibly enhanced through the
perimentally; such measurements have not been carried ouse of particle simulations, direct comparison between con-
for granular media, where the granular temperaftine ki-  tinuum theory and laboratory experiment becomes possible.
netic energy associated with the fluctuational velocities ofwWe compare directly to the results of RET], but many of
particles is difficult to control and difficult to measure. In the kinetic theories are similar in spirit. We do not, however,
addition, the small number of particles, long mean free pathszonsider more sophisticated theories that include long-range
and the dissipative nature of the medium have led some respatial correlation§12] or recollision effect§13].
searchers to the conclusion that continuum approaches are Laboratory tests of granular kinetic theory have not yet
doomed to failurd8,9]. proceeded beyond measuring the single-particle velocity dis-
As a result, the central question remains op@an con- tribution function[14-14. Simulations that make contact
tinuum equations, derived from kinetic theory and supplewith kinetic theory have focused mainly on the homoge-
mented by measurements, model rapid granular flows to theeous cooling state, a time-dependent state that eventually
same level that Navier-Stokes equations model the flows @ecomes spatially inhomogeneous. In those simulations,
liquids? Molecular dynamics simulations will play a crucial long-range velocity correlations develpp7], and molecular
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chaos no longer holds. A more sophisticated form of kineticchaos is made, i.e., velocities are assumed to be uncorrelated,
theory, ring kinetic theory, in which correlations in particle although for sufficiently dense media, positional correlations
velocity are accounted for, is required for a full descriptionare allowed:
[18]. A simulation on a granular gas between two walls with
different granular temperatures shows that in the quasielastic f@(ry,vi,r2.v2,0)=9(a,») f(r,
limit, granular kinetic theory produces good temperature pro- .
files [19]. Finally, a number of simulations have been per- —ak,v HfD(rvp1),  (4)
formed on granular media in contact with a heat H&0— )
22] to produce a steady state. In one dimengibb), spatial where o is the particle radiusk is a unit vector pointing
[20] and velocity [21] correlations can develop, and the from the center of particle 1 to the center of particle 2, and
single-particle velocity distributions may be non-Gaussianv=3nwa? is the solid fraction in 2D.
[22]. Recent results on a randomly driven two-dimensional The positional correlations are accounted for through
system show long-range correlations in good agreement witg(r,v), the radial distribution function, which is defined as
a mode-coupling theorj12]. the probability of having a pair of particles whose relative
In Sec. Il we describe the molecular dynamics simula-distance lies in the intervalr +dr, normalized by the prob-
tions and the forcing methods. Section IV discusses simulaability for an ideal gas. This function, evaluated at the point
tions of granular media in which the heat bath is spatiallyof contactr = o, gives the increase in the probability of col-
homogeneous. In that section, we will check the assumptionissions due to dense gdexcluded volumgcorrections. For
about the nature of the single-particle distribution functionelastic hard disks, spatial correlations are described by the
and the correlations of position and velocity, as well as meaformula of Carnahan and Starling7],
suring the equation of state and In Sec. V we turn to our
main purpose: allowing the heat bath to vary spatially so that v(16—7v)
stationary inhomogeneous states may be induced and de- Gedl V):m' (5)
scribed. From these simulations we can study the constitutive
relations, the shear viscosity, and the thermal conductivityyhere
Section VI contains concluding remarks.
G(v)=vg(o,v). (6)
Il. KINETIC THEORY
Equation(5) works well for elastic particles with solid frac-
We begin with a brief review of the kinetic theory of tijons below 0.675, where a phase transition takes {28k
granular media, which differs Only Sllghtly from the kinetic and is often used in mode“ng granu|ar meﬂ?&_ Equation
theory of elastic particles as presented in textbooks such 38) is the definition ofG in terms of the(unknown radial
[23]. Specifically, we discuss kinetic theory as described byyistribution functiong(r,v), evaluated ar = o, while Eq.
Jenkins and Richmal®,7], but most of the kinetic theories (5 is a particular model fos, denoted by the subscript CS.

in the literature are similaf5,24—-26. The number of par-  An unforced collection of elastic particles approaches a
ticles in a volume and velocity elemenrdv centered at Boltzmann distribution,

position r and velocity v is given by f)(r,v,t)drdyv;
fD(r,v,t) is called the single-particle distribution function. £0(r v,t) = n(27T) " DPRe~C¥2T )
Continuum quantities are given as averages 6¥8¢r,v,t). Y '

In particular, the number d.ensity, average velocity, anthereCE|v—v0|. Away from equilibrium, the local distri-
granular temperature are defined, respectively, as bution for elastic particles is nearly Boltzmann. Granular me-
dia dissipate energy with each collision, so that the equilib-
n(r,t)EJ FO(r v,t)dv, 1) rium_ state qf an unforcgd granular mediur_n is t_ha'g of_no
relative motion. For grains, the single-particle distribution
function is simply assumed to be nearly a Boltzmann distri-
1 bution.
Vo(r,t)Eﬁf fO(r,v,t)vdy, 2 With these assumptions, and the additional assumption
that the coefficient of restitutioais only slightly less than 1
(particles are only slightly inelasyicequations for the con-
T(r,t)EiJ FO(r,v, 1) (v—vg)2dv, 3) tinuun_w mass, momentum, and energy can be derived for
nD disks in two dimension§s,7]:

whereD is the number of dimensions. Note that the granular B
temperaturerl is not the thermodynamic temperature of the EJFV'(”VO)_O' ®)
particles due to the random motions of their molecules, but
the analogous kinetic energy due to the random motions of oV
. . 0
the macroscopic particles themselves. n—+nvy-Vvg=—V-P, (9)

The evolution off™)(r,v,t) depends on the joint prob- Jt
ability distribution, f®)(r,,v;,r,,v,,t); collisions of two T
particles change the single-particle distribution. As in mo- NS +nv, VT=—V.q—P:E—, (10

lecular kinetic theory, Boltzmann’s assumption of molecular ot
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whereE;; =3 (d;vo;+d;vq;) are the elements of the symme- is independent of collision velocity, a finite time singularity
trized velocity gradient tensd. The constitutive relation for can occur in the collision frequency, a phenomenon known

the pressure tens® is Newton’s stress law, as inelastic collapsg32,33. In real materials, however, the
coefficient of restitution is a function of collision velocity
P=(P—=2\TrE)I -2u[E—(TrE)I], (1) [34,35. To avoid the simulation-ending inelastic collapse,

. we allowe to vary[36] as
where Tr denotes trace amds the unit tensor. For the heat y[36]

flux g, the constitutive relation is Fourier's heat law, 8
1-Bvy, vn<v, 18
— e =
q=—«VT. (12 (Vn) €, Vo>V, (18
The 2D equations clogd€] with the equation of state, which . _ . .
is the ideal gas equation of state with a term that includedvherev,, is the component of relative velocity along the line

dense gas and inelastic effects, joining particle centergnormal to the contact surfageB
=(1—¢€)(v,) #, B=3/4, ande is a constant, chosen to be
P=(4/ma?®)vT[1+(1+e)G(v)], (13  0.7. In simulations of oscillated granular media, the results

. ) ) are not sensitively dependent eq or 3, and e=0.7 pro-
and the predicted values, de_noted with a subscript 0, for thg,ces good agreement with experimght.0,14. In addition
temperature loss rate per unit volunpe to forestalling collapse, variation & allows us to further

16vG() 32 pro_be granular kinetic t.hgory, whig:h assumes tratl. AsT _
70:—3(1_92)( (14)  Vvaries, the relative collision velocity will vary; hence so will
o e, and the relative importance of that assumption can be
gauged. At a given temperature, a distribution of collision
velocities and a corresponding distribution of coefficients of
restitution occur. Varyind varies not only the average value
T of e, but also the amount of deviation around that average.
\ﬁ, (15) The variation ine gives rise to a velocity scale that is not
™ present in the elastic case. All quantities given below are
nondimensionalized with the particle diameterand the
crossover velocity, at which the coefficient of restitution
becomes a constant. In particular, the granular temperatures
(16)  all scale withv?.

Because inelastic collisions remove energy from the sys-
tem, we must constantly add energy to achieve any sort of
steady state. The situation is opposite that in simulations on
nonequilibrium systems of elastic particles, where the con-

(17) stant energy input from the driving must be removed through
an artificial mean$37].

Because of the assumption of near elasticity, the coeffi- Stochastic heating is performed in one of three wafs:

cient of restitution enters only in the equation of state and inWhlte noise-random kicksdv are added to particles’ veloci-

the expression for the temperature loss due to inelastic copes: (B) Random accelerationsparticles accelerate be-

lisions. To this order, the thermal conductivity and viscosi-\Ween collisions, andC) Boltzmann batk-particle veloci-

ties predicted by inelastic kinetic theory are the same ales are obliterated and replaced with velocities chosen from

those given by the Enskog procedure for elastic diges. a Gaussuan. dlStI’IbUtIOhl. We discuss the motivation and
implementation of each in turn.

a
and the transport coefficients, which take on the Enskog va
ues: the bulk viscosity,

8vG(v)
0=

mTo
the shear viscosity,
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[ll. DRIVEN GRANULAR MEDIA SIMULATIONS
A. White noise
We perform event-driven simulatioi80,31] of a granu- - . , ) ,
lar gas in a two-dimensional periodic box of side length  Williams and MacKintostj20] introduced white noise as
—52.60, in contact with a thermal bath that stochasticallyathermal bath for dissipative granular media. In their model,
heats particles throughout the volume. Between collision a random velocity is added to each particle’s velocity during

particles travel freely. In our model the collisions are instan-£2ch time stef\t. The velocities added to each particle are

taneous and binary: they conserve momentum and dissipaﬂ?t correlated with one another, nor are they correlated with
energy. Particles are assumed to be frictionless: particle fridh€ velocities added in the previods. This model has the
tion can be incorporated into kinetic theoriE4,25, and advantage that the equation of motion for particles between

was included in the simulations of oscillated granular medigfCllisions may be written down as the Langevin equation

[10,11,4, but introduces complications that we wish to avoid d2x.
for this study. 2' =g, (19)
When particles collide, new velocities are calculated by dt

reversing the component of the relative particle velocity
along the line joining particle centers and multiplying it by wherex; is the position of théth particle and/; is a Gauss-
the coefficient of restitutioe, which is between 0 and 1. ian white noise term, i.e(Z;(t)Z;(t"))=2F §;6(t—t"). The
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fact that the heating can be analytically expressed makes its 1.0 =%,
inclusion into kinetic theory possible. - ]
This forcing is straightforward to include in our simula- 0.90 ’ E
tions. Rather than adding the random kicks to particles all at . ° ]
once, we kick 2, randomly chosen particles every time 080 B
there is a collision. The numbeg, then, represents the ratio A 9 o ]
between the rate of kicks and the rate of collisions. If the 0.70 e E
kicks are totally random, the center of mass momentum of ]
the system will fluctuate, but we desire that the heat bath can 0.80 E
only change the fluctuational velocity, not the mean. To en- ]
sure that the mean velocity remains fixed, we apply random 0-5100_6 AT T i i 108
kicks tor, particles: T

FIG. 1. Average coefficient of restitution sfor »= 0.5, for the
three forcing methods:+: White noise forcing, ¢ : Accelerated
forcing, *: Boltzmann bath. As discussed in the tektjs nondi-
mensionalized with/2 .

Viovi+| oV, A<isr,. (20)

The kicks themselves are all of the same sjw|, but the
directionsfi are randomly chosen. Then, kicks in the oppo-
site directions are applied to anothir randomly chosen  randomized, its partner particle is also given a new accelera-
particles: tion, opposite to the first particle’s.
Experiments suggest that particles accelerate uniformly
Me<i<2ry. (21)  from collision to collision, with most of the changes in ac-
celeration happening at collisioi46]. Therefore,r,=1 is

Because each kick requires recalculation of the kickedProPably a relatively good model for the air table experi-
particle’s collision list, we want to minimize the kick fre- ments. Asry increases, the particles feel a constant accelera-

quency. Empirically, we find that our results are independention over & small temporal range. In the limit thgt-, the
of r, for r,=1 andr,(&v)? constant. This is not surprising model is the same as the white noise model, which is rate

since the average length of randomly oriented kicks of independent. In practice, we observe that the distribution of
collision velocities for the accelerated particle model ap-

length év is {rdv, and only the total kick between colli- . )
sions matters when collisions occur. For this reason, we pefroaches that for the white noise moder gt-8. .
Variation of coefficient of restitution with normal colli-

form most of our simulations with,= 1, where the collision . oo T . : X
rate equals the kick rate. sion vequty is cntlca_ll for S|mula}t|ons V\(lth the accelerated
forcing, since inelastic collapselike collision sequences are
_ _ more prevalent. A given pair of particles, accelerating to-
B. Random accelerations: The air table model wards one another, can hijack the collision sequence of the
While white noise forcing has the advantage that it can b@as, rapidly recolliding with one another. If the coefficients
incorporated into the kinetic theory relatively easily, it hasof restitution are constant, this scenario will produce col-
the disadvantage that it does not model any particular red@pse. By allowing the collisions to become more elastic for
system. In most experiments, energy is added to the granulgiecreasing relative velocities, however, collapse is pre-
media through a boundary, causing gradients in the energyented; eventually, the relative acceleration will change, and
perpendicular to that boundary. the particles will move apart. However, the large number of
One experimental system is capable of producing homonearly elastic collisions produced by such a sequence causes
geneous steady states, specifically, a collection of pucks offie average coefficient of restitution to increase at the highest
an air tablg16,38. Either due to inhomogeneities in the air accelerations, as seen in Fig. 1.
flow or because the pucks are not perfectly parallel to the
surface of the table, air flow accelerates the pucks uniformly C. The Boltzmann bath
from one collision to anothgr 6], which counters the loss of
energy due to inelastic collisions and produces a steady :statgS
In our model of the air table each particle moves under 4
uniform acceleration:

vi—vi— v,

Finally, we introduce a heat bath that approximates the
sumption of molecular chaos. Molecular chaos assumes
at the velocities of colliding particles are uncorrelated; par-
ticles collide, and before they collide with one another again,
they collide with a large number of other particles, losing the
memory of the initial condition. A strong heat bath can per-

. : . form the same function if it replaces the particle velocities
The magnitudes of all E)art|cle acceleratiors, are the with new velocities chosen from a given distribution. If the
same, but the directions;, are randomly and uniformly heat bath interacts with the particles often enough, molecular
chosen. When a collision occurs;2particles are given new  chaos will be guaranteed. While this bath is wholly unphysi-
r;. In order to conserve total momentum, we hold the totalcal, it produces a situation in which the kinetic theory is
acceleration of the particles at zero by giving exactly oppo-expected to apply exactly; it is a useful check on calcula-
site accelerations to pairs of particles. Initially, each particletions, and helps to elucidate the role of velocity correlations.
is paired with another, and these are given opposite accelera- Implementation of the Boltzmann bath is simple. When
tions. Later, when one patrticle is chosen and its acceleratiotwo particles collide, 2, particles are randomly chosen and

a=aol;. (22
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given velocities chosen from a Boltzmann distribution with a T =1.05, v varies v =0.5, T varies
specified temperature. -1 T ' ©
10 "¢ 12
IV. HOMOGENEOUS FORCING, CORRELATIONS, g 10-3j %
AND THE EQUATION OF STATE @ ] =
With any of the thermal baths just described, we can set 10'5 3 =
up inhomogeneous states by varying the strength or rate of
forcing over space. However, in the simplest case we force 1971} i3
homogeneously. The simulations are performed for a variety __ i =
of solid fractions, forcing rates, and forcing strengths for the 2 10‘3 b ,%
three thermal baths. @ 18
The average coefficients of restitution for a number of 10'5 =
runs at different temperatures are shown in Fig. 1. Note that
at high temperatures, the average coefficient of restitution 1 0-1 i e
begins to rise for the accelerated forcing. This is due to the __ i 18
inelastic collapselike collision sequence described earlier for > 10'3 i ’*,::,
this forcing. As the magnitude of acceleration increases to @ - s
produce higher temperatures, these multiple collisions be- 10'5. / m
come more and more important, leading to a large number of
collisions with very low velocities, and so a high average -4 -2 0 2 4 420 2 4
coefficient of restitution. ' v

In the state produced by homogeneous forcing, we can

measure the single-particle dl;trlbutlon function, the tem-( ) white noise forcing(c) and(d) accelerated forcing, an@) and
pera_ture_ prOduced by the_forCIng, th_e pressure, the radi ) the Boltzmann bath, all witlr,=1. The velocities are scaled
distribution f_u_nctlon, velocity correlations, and Ioss_ rates.ith the temperaturd, so thaty’=v/T and®(v')=Pr(v') T,
These quantities can be compared to the corresponding quagipere pr¢') is the probability distribution of". In the left col-
tities for elastic simulations and to their assumed or calCuymp, the average temperature is approximately 1.05, and the solid
lated values from kinetic theory. fraction is varied ¢: »=0.1, *: v=0.4, ¢: »v=0.6, A: »=0.8)
In the right column is fixed at 0.5 and the temperature is varied,;
(b) T=1.93x107 5% (+), 3.13<1072(*), 1.06 (¢ ), 1067 (A). (d)
A. Single-particle velocity distributions T=3.0x1075(+), 1.1x1072(*), 1.05 (¢), 256 (A). () T
The lowest order approximation fan the kinetic theories = 1-2¢10°° (+), 1.1x10°2(*), 1.02 (), 102 (&). The solid
is usually chosen to be a Boltzmann distribution, the form ofcUrves are Boltzmann distributions.
f for an undriven elastic gas. A driven inelastic gas, although N matter what the actual form of the equation of state,
it approaches a steady state, is by no means guaranteed t0 ggt can define a quantity
like an undriven elastic gas. Nevertheless, the single-particle
distribution functions measured from the simulation are all Gs(v)=[(mwo?Pl4vT)—1]/(1+e),
close to Boltzmann distributions, as seen in Fig. 2. ] o o o .
Overall, the accelerated forcing produces the strongest dévhich explicitly satisfies Eq(13). If the kinetic theory is
viations from Maxwellian, and the Boltzmann bath, unsur-correct, then
prisingly, produces the least deviation. In all cases, the de- Go(v)=1vg(0) 23)
viations become stronger as the density and temperature S ’
increasgrecall that increasing temperature has the same ef-
fect as decreasing the average coefficient of restitution
These deviations tend to flatten the distribution, increasing
the probability in the tails and slightly in the peak, and de-
creasing the probability in between, as displayed in Fig. 3.
Similar types of deviations, but much stronger, have been
observed in experiments on a dilute, vertically oscillated
granular layeff14].

FIG. 2. Single-particle distribution functio®(v’) for (a) and

10

log, [Pr(v')/Pr.(v')]

B. Equation of state and the radial distribution function

The equation of statd13), relates the pressure, density, 020 ‘ ‘ ‘ ‘
and temperature to the coefficient of restitution &(d). As -4 2 0 2 4
stated in Sec. Il, kinetic theories often use Ef3), with
G(v) given by Gcg(v), from Eq. (5) to calculate pressure. FIG. 3. The velocity distribution function Pr of =v/T from
This prescription may fail, then, either due to an incorrecta simulation with accelerated forcing at=0.5 andT=1.05, di-
equation of state, or an inappropriate use of the Carnahanded by Py, a Maxwell-Boltzmann distribution witfT = 1.05.
and Starling relation. The two curves are for the two velocity components.
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FIG. 4. g(r) at v=0.5T=1.05 for(a) white noise (,=1) and , X
(b) Boltzmann ¢,=4) forcing. The dot-dashed lines represent the —_ N * o
value ofg(a) given by the Carnahan and Starling relation E_q 38 1.0 + .................................................... 4.0
for v=0.5, while the dashed lines sha@(v)/v. For white noise O] Cs T
forcing, g(o,v) coincides with neither line, while for the Boltz- = °T Lo+
mann bathg(c,v) coincides withG4(v)/v. " 08 N +]
o < < *
as defined by Eq(6). Testing the equation of state, then, is
equivalent to testing E(23). 0.6 . ‘ . ‘
Even if Eq.(23) is satisfied, the form of the radial distri- 0.0 0.2 0.4 0.6 0.8
bution function at contacg(c), may or may not be given by v
the Camahan and Starling value Gicg(v)/v. Deviations gy, 5. (a) Gy(v) for inelastic hard disks driven by : white

from Eq.(13) and differences between the elastic and inelasy,gse forcing, ¢ : accelerated, and *: Boltzmann forcing. The solid

tic radial Qistri_bu'gipn funct!ons can combine to p.roducecurve is the Carnahan and Starling relati®py(»), given by Eq.
Gy(v) that is significantly different fronGeg(v), as given (5 () The ratio 0fGy(v) to Geg(v). All runs haver, =1 andT
by Eq.(5). After discussing the method of calculatiGg(»), -1 gs.
we test each of the two effects given above, then show the
resulting differences betwedbg(v) and G v).

The virial theorem of mechanics as applied to hardC
spheres can be used to calculate the equation of[ &840,

Furthermore, for neither forcing type does H§), the
arnahan and Starling relation f@c(v), properly predict
d(o,v); rather, inelastic particles are more likely to be

o R nearly in contact than elastic particles at the same density
PV=NT+5— > k-Av, (24 and temperature.

m e For inelastic particles with each type of forcing(o)
where the sum is over all collisions that occur during the>Gcg»)/v. For either white noise or accelerated forcing,
measurement timg,,, Av; is the change in the velocity of inelasticity also undermines the equation of state through the
theith partide due to the collision, arf(\'j is the unit vector formation of VEIOCity correlations, as shown in the fOIIOWing
pointing from particle center to particle center. In this form, Section. These two effects cancel each other to some degree;
measurement of pressure reduces to measurement of the 49-assess the final result of usi@gq») and the equation of
erage particle energy and the average change in the normstiate, Eq.(13) in models, we calculat&(v) for the three
velocity at collision. types of forcing as’ varies. The results are shown in Fig. 5.

Using Eq.(24) to measure pressure, and assuming the&=or v below~0.675, where elastic particles undergo a phase
equation of stat¢Eq. (13)], we produce a measurement of transition to an ordered staf8], the white noise and accel-
G(v), denotedG(v), where the subscripgtstands for simu-  erated runs produce lowd® than elastic runs; Boltzmann
lation. This measured value & will be used to test Eq.23) runs havﬁs( V) S||ght|y above the elastic values.
and compared to the Carnahan and Starling vaisg(v) As the temperature decreases-1, and the values of
from Eq.(_5). Accurate characteri;ation &(v) is importar.lt,. G<(v) must approach the elastic values. Therefde(»)
because it occurs in the expressions for transport coefficients, st he temperature dependent; this dependence is shown in

To investigate the radial distribution function and the Fig. 6, along with the value dB(v) given by Eq.(5). As T
equation of state, we pla(r,») for a run with white noise decreases, the inelast@&,(») approaches the elasts, and

forcing and a run forced with a Boltzmann t_>ath in Fig. 4. 5 highT, wheree is independent off, G(») becomes in-
Each plot also indicates the valueg(io, ») predicted by EQ.  gependent off. As for the single-particle distributions, the

(23), as well as that predicted by EG), respectively testing ccelerated forcing shows the greatest deviation from the
the equation of state, and the Carnahan and Starling relatiof)5stic behavior.

for the radial distribution function.

While G4(v)=vg(o,v) for the Boltzmann forcing, this
does not hold for the white noise forcing or the accelerated
forcing (not shown. Recalling that the Boltzmann driving Molecular chaos is the assumption that particle velocities
represents particles in contact with a highly randomizingare uncorrelated. Knowing the velocity of one of a pair of a
bath, we conclude that this failure of the equation of stategolliding particle gives no information about the velocity of
(13), is due to incomplete randomization of particle veloci- the other. In light of the behavior @, and simulations that
ties through collisions, or in short, a breakdown of molecularshowed strong velocity correlatiof&1,17,13, we measure
chaos. velocity-velocity correlation functions.

C. Velocity correlations
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FIG. 6. G4(v) vs T for »v=0.5. +: white noise,¢ : accelerated,

*: Boltzmann. The dotted line is the Carnahan and Starling relation

Gegv), given by Eq.(5), for v=0.5.

Given two particles, labeled 1 and &,is a unit vector
pointing from the center of 1 to the center of 2. Particle 1's
velocity then has componemé{ parallel to andvy perpen-
dicular tok; likewise for particle 2. We define two correla-
tion functions

ivly=> viviiNg, (25)

(vivz)=2 vivy/N;, (26)
where the sums are ové\, particles such that the distance
between the two particles is withisr of r. If particle veloci-
ties are uncorrelatedy|vl)) and(vivi) will both give zero.
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FIG. 7. Velocity correlations as a function of particle separation
at v=0.5T=1.05 for white noise ¢), accelerated ¢ ), Boltz-
mann forcing (), and elastic particles/). Each curve is built
from around 100 frames separated in time by 100 collisions per
particle, andér = ¢/10. Both the elastic particles and the particles
forced with the Boltzmann bath have essentially zero correlation
over most of the range. The Boltzmann bath shows positive corre-
lations only at very short range.

of yo, G was taken from the equation of state measurements,
and the average within a run was used. Most surprising is
the increased loss rate over kinetic theory at relatively low
temperature.

The calculation ofy requires only the evaluation of

The parallel and perpendicular velocity correlations are

plotted in Fig. 7 for the three types of forcing and for elastic
particles. Both for particles driven with white noise and ac-
celerations, strong long-range velocity correlations are ap-
parent, with more correlations produced by the accelerated
forcing, consistent with its stronger deviations in the single-
particle velocity distribution and if. These correlations are
not small, reaching as much as 40% of the temperature; typi-
cally, the perpendicular correlations are about one-half of the
parallel correlations. Further, these correlations are long
range—they extend the full length of the system. The paral-
lel correlations drop to zero &t/2, while the perpendicular
correlations reach zero arouné- 100, and have a negative
value but zero derivative &t/2. The long-range nature of the
correlation is not due to the size of the computational cell.
Similar cell-filling correlations were observed in runs 4, 16,
and 64 times larged1].

For the Boltzmann forcing, some correlations are visible
at very short range; inelastic collisions generate short-range
velocity correlations, which are destroyed by the heat bath
before they can propagate to larger length scales.

D. Loss rate
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FIG. 8. Temperature dependence of loss rate with0.5. (a)
vlvo, Where the kinetic theory resuly, [Eq. (14)] assumes a

velocity-independent restitution coefficierb) y/y., where y,

The loss rate of temperature due to inelastic collisions,
divided by the rate calculated from kinetic theory, [see

takes into account the velocity dependenceeofhe symbols de-
note the type of forcing:+, white noise;<¢ , acceleratedx, Bolt-

Eq. (14)], is shown for the three forcing methods as a func-zmann. The dotted lines show/€/4\T)(v2)./(v,) for the white

tions of T in Fig. 8@ andv in Fig. 9a). For the calculation

noise and accelerated runs; see B39).
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g l 2 N3 (2)
Y= —Zf f—(l_e )(V]_z'k) f (Vl,Vz)dSZdvldVZ,

whered(} is the angle element. This expression simply av-
erages the energy lost per collision,

F e (1 e vy 2 (28

over all possible collisions. The remaining factor of

(v1,-k) takes into account the fact that grains traveling to-
wards one another more rapidly are more likely to collide
during any given time interval.

The kinetic theory result for the loss rate, Eq4), fol-
lows from the collisional integral, Eq27), under two as-
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FIG. 10. Probability distribution of/.=|v;—v,|/ T, the mag-
nitude of relative velocities at collision for different forcings, white
noise (+), accelerated ¢ ), Boltzmann (), and for elastic par-
ticles (A), all at v=0.5 andT=1.05. The solid curve is the distri-
bution predicted by uncorrelated collisions between particles cho-
sen from Boltzmann distributions, (1!2?3)vce"’§’”. Positive
velocity correlation of nearby particles causes a reduction in the
collision velocities, and hence a reductionn

I'(a) is the gamma function, and(a,b) is the incomplete
gamma function. In the limit that,—0, y.— vo.

Figures 8b) and 9b) show y/ y, for the same simulations
shown in Figs. &) and 9a). Taking the variations i into
account removes the underestimationofIn the revised
picture,y approacheg, at low T and at lowv, but as either
increases;y drops from the value predicted by.. This is
due to the velocity correlations produced by the inelasticity.
Locally, particles are moving together, reducing collision ve-
locities and collision frequencies, thereby reducing the loss
rate; see Fig. 10. For the Boltzmann forcing, velocity corre-
lations are wiped out, angt is close toy,.

Writing y in terms of average quantities makes its depen-
dence on the collision velocity more explicit. The loss rate is
identically equal to the average energy lost per collision,
(AE)., times the average collision frequency per volume

sumptions: molecular chaos, which ought to be a more rea/y,

sonable assumption at lower temperatures, and th
independence o on the variables of integration, so that it is

pulled out of the integral as a constant. At lower temperature,

where the variation of with v, leads to a distribution of at

e

1
y=(AE)fIV= Z(1—e2)<v§>cf/v, (32)

a given temperature, the second assumption fails. As tenwhere thec subscript denotes an average over collisions, and

perature drops still farther, the spreadeaeduces, since is
bounded from above by 1; at the very lowekt y does
approachyy.

Substituting the function form dé(v,), Eq.(18), into the
collisional integral, Eq(27), assuming molecular chaos, and
performing the integrations, we arrive at an equation yor
= vy, that takes into account the variation @fvith v, :

4vG\T o o )
ye:W[(l_ eo)(va+ AT)exp —Va/4T) +41],
(29)
where
| =21 AATYT AT (24 3 8)—T(2+ 3 B,v2/4T)]

— AZ22PTIVAT (2+ B)—T'(2+ B,v24T)],  (30)

assuming again that is independent of collision velocity.
Similarly, the virial equation of state, Eg24), in terms of
average quantities is

Vo 1+e

P=(4/ma?)vT 1+FfT(vn)c . (32

Solving for f in terms of G from Egs.(13) and (32), and
substituting this into Eq(31) we obtain

_(1-e)G (vi)e

(Vn)e

If the distribution of relative normal velocity at collision is
equal to that predicted by molecular chaoB(v,)

= (1/2T)v,exp(—V¥4T), then(v3).=4T and(v,).= 7T,
so thaty= vy, is recovered.

y nT. (33

g
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FIG. 11. Profiles of *:T, O: v, and ¢ : P/5 for inhomogeneous FIG. 12. The thermal gradient() and heat flux {) for the run
forcing in which the magnitude of the acceleration depends linearlyshown in Fig. 11.

on the distance from/L:%. The pressure is nearly constant, so
that the variation iriT induces a variation in through the equation  fium; the pressure is nearly constantanConstantP and
of state. For this run, the average solid fraction is 0.75. varying T imply varying » through the equation of state, and
this variation is observed.
As seen in Fig. 10, however, the distribution of collision ~ The cell is divided into 50 slabs alorafor measurement
velocities is different from the molecular chaos values due t@urposes; for each slab, snapshots allow calculation of the
the presence of velocity correlations. To show that this deaverageT and » within. Because the pressure may in prin-

viation accounts for the remaining difference betweeand  Ciple vary over space, its measurement using the virial fails.
Ye. (V3 and(v,). were calculated in the simulations. Their Pressure is measured at the interfaces between the slabs by

ratio, normalized by the molecular chaos valugT4r is  keeping track of the normalz) momentum flux through
plotted in Figs. 8) and 9b) as dotted lines. The change in these boundaries, both due to particles freely traveling
the relative collision velocity tracks the changeqjinexcept ~ through them, and due to collisions between particles that lie
for high temperature accelerated runs, in which repeatef! different slabs. As in Sec. IV DG is calculated from Eg.
two-particle collisions become important. (13) using the measqred pressure. In addition, the_ energy
added due to the forcing and the energy lost due to inelastic

collisions are separately accounted for for each slab. The
difference between the energy gain and loss in a given slab
must, in a steady state, be made up for by the difference in
So far, we have been concerned with homogeneous for@nergy flux through its two boundaries, so that the net rate of
ing. By using applied forcing that varies spatially, we canchange of the energy in the slab is zero. Assuming that the
induce inhomogeneous steady states. Then, by measuriggergy flux through the line &= (0,L) is zero due to sym-
fluxes, transport coefficients are calculated, and compared tetry allows calculation ofj,, the heat flux through each
kinetic theory. Inhomogeneous states have only been calc$lab boundary; see Fig. 12.
lated for the accelerated forcings; measurements for the ho- Onceq, anddT/Jdz are calculated, Fourier’s heat law, Eq.
mogeneous state show that deviations from the elastic casé2), can be used to calculate the thermal conductiwity
are strongest in this case. The results of many simulations, holding the averagat
0.75, but varyingg, in Eq. (34) and therefore the size of the
thermal gradient, are shown in Fig. 13, and are compared to
the result of Enskog theory, as given by Ed7). At low

Recall that with the accelerated forcing, the direction Oftemperatures Enskog theory does a good job prediating
the accelerations of particles fluctuated at a fixed rate, but the ’

magnitude was always the same. To induce a thermal gradi- 15
ent in the simulation, we allow the magnitude of the accel- [
eration to vary in space. Specifically, when the acceleration
of a particle is to be rotated, the magnitude of its acceleration
is given by

V. INHOMOGENEOUS FORCING
AND TRANSPORT COEFFICIENTS

A. Thermal conductivity

K/K

aol1-|(z—zL)/(zL)]], (39

i.e., we apply a linear gradient in the forcing, dependent on
one spatial directionz), peaked in the center of the cell and
falling to zero at the periodic boundary. In order to preserve 00l '2
the center of mass momentum, the partner particle receives 10° 107 10° 10% _10° 10" 10" 10
the opposite acceleration, regardless of its position in the T
cell, as described in Sec. Il B. FIG. 13. Ratio ofx measured from simulations ta, from En-
Under this forcing, a stable thermal profile develops, askog theornfEq. (17)]. Each symbol denotes a different run, but for
seen in Fig. 11. The system reaches a mechanical equilileach run, the average solid fraction is 0.75.
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FIG. 15. Normal stress difference divided by pressure as a func-
tion of 1—e. The line has slope 1.

However, as the temperature increases @(wj) decreases, tyjce that of the horizontal. Introducing a bias in the accel-
Enskog theory does worse; at the highest temperatures, ERation of only 1%, however, does not introduce anisotropy
skog theory overestimates the thermal conductivity by a facino T: for larger shear rates this is not the case. To study the
tor of 2. _ _ _ simplest case, we restrict our simulations to biases of 1%.
Note that this calculation does not test Fourier's law; pye to their dissipative nature, many granular flows are
rather we assume that Fourier's law is correct, and use it tQupersonic. In supersonic shear flow, the nearly parallel par-
calculateK. Ar_laIyS|s bas<_ad on closures of the .Boltzmanntide paths lead to extremely long mean free paths, casting
equa.tlon pre_dlcts a term in the heat flux proporhonal Fo theyoubt on a continuum approag8]. A small bias in the ac-
density gradienf42]. If such a term had a sizable magnitude cejeration allows the shear flows to remain subsonic, so that
and were ignored, it would cause a reduction in the observeghean free paths remain smaller than the system size.
K. In Sec. V A we described calculation of the pressure by
measuring the normal momentum flux through planes. Mea-
suring the tangential flux through the planes, and introducing

Spatial inhomogeneity in the magnitude of the forcing led §econd set of planes orthogonal to the first, allows canu—
to a stationary inhomogeneous temperature field, allowing?“On of the full four-component pressure tensor. As seen in
measurement of heat flux and thermal conductivity; spatiaf /9- 15, the pressure tensor is anisotropic even though
inhomogeneity in the mean of one forcing component lead&SOtropic; the anisotropy increases &sncreases, oe de-
to a stationary inhomogeneous velocity field, allowing mea-créases. Foe~1, the stress difference is approximately pro-
surement of the momentum flux and the shear viscosity. IiPortional to 1-e, but the variation ine within a given run

particular, particle accelerations are chosen according to Probably plays a role, as it did in the loss rate; see Fig. 15.
For these runsG is calculated from Eq(13) using the trace

B. Shear viscosity

ay=ao[0.01siM27z/L) + 4], (35 of the measured pressure tensor.
For each run at fixed, we can test Newton’s viscosity
a;=api, (36 law,

where ¢, and i; are numbers chosen randomly from a

Gaussian distribution with zero mean and standard deviation

of 1.

vy

(39

Py TR

This forcing produces steady states with velocity, tem-

perature, density, and stress fields like that shown in Fig. 14. 0.04
The velocity profile is nearly sinusoidal iy and the tem-
perature, pressure, and solid fraction are essentially indepen-
dent ofz In the simulations discussed so far, we have only 0.02- ]
considered the scalar quantify={(v —(v))?)/D, whereD is S I
the number of dimensions and th¢ denote averages over 0.00- .
particles. This temperature is more generally the trace of the [
temperature tensor: .
-0.02+ ]

Tij ={(vi—= (Vi) (Vi —=(vi)), (37) i

wherei,j range over the directions, and denotes théth 004 004 002 000 o002 o004

component of the velocity. In principld,,, need not equal 6vy / oz

T,, if the rate at which fluctuational energy is traded between

the directions is slower than the rate at which it is added FIG. 16. Theyz component of the pressure tensor versus the
anisotropically; such is the case in a vertically oscillatedcorresponding velocity derivative for the run of Fig. 14. The slope
granular layer, where vertical fluctuational energy can beof the best fit line is— u.
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1.207 ] Particle velocities are correlatedstandard kinetic theory
B . ] assumes molecular chaos: particle velocities are uncorre-
1100 R E lated. In our simulations, as in simulations of cooling granu-
= : ] lar media[17], strong velocity correlationgFig. 7) with a
= i L ] characteristic vortex structurigtl] develop. In the steady
100 - state, these correlations extend over the entire cell. Molecular
: . ] chaos is not required for kinetic theory, but a closure for the
0.900 E kinetic equation is critical. Similar considerations have led
g ] van Noijeet al.[13] to apply ring kinetic theory44], which
080§ allows for correlations in particle velocities, to a granular

100 102 system. . .
Spatial correlations are stronger than predicted by the
Carnahan and Starling relatiofiEq. (5)]. Even for simula-
FIG. 17. Viscosity, normalized by the Enskog valug, as @  tjons using the Boltzmann bath, in which velocity correla-
function of T, for »=0.6. tions are removed, the effect of inelasticity is to increase the
amount of spatial correlation at=o [Fig. 4b)]. In other
where the viscosityu is a constant of proportionality. A words, particles are more likely in the inelastic case to be
typical result is shown in Fig. 16, where the linear relation ofclose to one another than elastic particles in the same ther-
Eqg. (38) is shown to hold. The slopes of these curves thermodynamic state. The size of this effect is dependent on the
provide values forr which can be compared to the Enskog inelasticity, but can be greater than 15%.
result from Eq.(16); the results are shown in Fig. 17. The equation of state overestimates the collisional contri-
Unlike the loss rate and thermal conductivity, we find thatbution to pressure because it ignores velocity correlations.
the Enskog theory underestimates the shear viscosity &the factor in the equation of state describing the contribution
lower temperatures. However, the trend of decreasing transrom collisions,G¢(v), as calculated from the measurement
port with increasingr is the same. Even for elastic particles, of pressure and the equation of state, is smaller for white
Enskog theory is not expected to work to arbitrarily highnoise and acceleration forcings than that predicted by the
solid fractions; as density increases, deviations from Ensko@arnahan and Starling relatidizgs. (5) and (6)], denoted
theory are expected. As the inelasticity of particles increase$;-(v) (Fig. 5). In turn, Geg(v) is smaller than the actual
velocity correlations increase, reducing collisional momen-G(v)=vrg(v), as discussed in the previous paragraph. Be-
tum transport and lowering the viscosity. cause velocity correlations were ignored in the derivation of
the equation of statél3), the pressure due to collisions that
G describes is overestimated. To some degree, the increased
positional correlation and increased velocity correlation
Volumetric driving of granu|ar media leads to near|y Sta-WOfk against one another; the first increases the collision
tionary states that are amenable to comparison with kineti€quency, while the latter decreases it. The net result is that
theory, allowing us to test the six points of kinetic theory the Gs(v) from the pressure measurement is closer to Car-
listed in Sec. I. Volumetric driving is atypical; most granular nahan and Starling, E@5), Gcqv) than if there were only
systems are forced through a boundary. However, the staelocity correlationgFig. 4(@)].
tionary states achieved here are the simplest testing ground Newton’s stress law works well for low stre&sien at the
for kinetic theory, and provide an upper bound on the appli.highest inelasticitye= 0.7, no deviations from a linear rela-
cability of kinetic theories in the style of Jenkins and Rich-tion between stress and strain rgks. (11)] were observed
man[5-7,25,26 to real systems. (Fig. 16.. However, in order to keep the temperature isotro-
Given that many of our simulations involve coefficients of pic, we have limited ourselves to cases in which<T;
restitution that are not near 1, the general level of agreemerpany flows of interest are supersonic, with average veloci-
with kinetic theory is surprisingly good, suggesting that con-ties much larger than/T. Becausex depends or, and
tinuum approaches to dissipative granular media are capabtberefore on position, Fourier’s heat law was not tested in the
not only of qualitative, but also quantitative descriptions ofsame manner that Newton’s viscosity law was.
real systems. We now discuss each of the six points in turn. Temperature loss ratgr and thermal conductivitk are
Single-particle distribution functions are nearly Boltz- reduced by inelasticity, while shear viscosijtyis predicted
mann For all forcing types, temperaturésoefficients of res-  relatively well by Enskog theoryzor increasing inelasticity
titution), and densities, the single-particle distribution func-or density in homogeneously forced runs, velocity correla-
tions are close to Boltzmann distributioriig. 2). The tions also increase. As a consequence, the relative collision
deviations from GaussiafFig. 3) are consistent with but velocity decreases¢Fig. 10, leading to a reduction in the
much smaller than those seen in experiments on thid ( temperature loss rate due to inelastic collisihgys. 8b)
layer deep oscillated granular medigl4]. In those experi- and 9b)]. In the most severe cases examined, once corrected
ments, deviations appear to be due to spontaneous spatfar variations ine, this deviation could be as high as 20%.
variations in temperature that are not taken into account itnhomogeneously forced runs allowed calculationuefand,
the analysig43]; such variations become large for cooling, assuming Fourier’'s lawg; w never deviated from the pre-
unforced granular media. The smaller deviations exhibited irdiction of Enskog theory by more than 15%ig. 17), while
our simulations may represent smaller temperature fluctua« was found to be smaller than predicted by a factor of 2 for
tions. high inelasticities(Fig. 13. This differential success sug-

106 104 1072
0

VI. CONCLUSION
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gests that velocity correlations, which should be present imlependent calculations should be performed, allowing mea-
both cases, are not responsible for the large reduction in surement of the bulk viscosity. Such calculations should also
Rather, the inelasticity itself may be the cause. Enskogrovide measurements of the frequency dependence of the
theory, applied to granular media, assumes #vatl; the transport coefficients, which may be relevant for oscillated
values ofk, and uq are the same as those for elastic par-granular media. Fourth, the granular continuum equations
ticles. When grains collide, energy is dissipated, so that thean be used to perform stability calculations on problems
amount transported collisionally is necessarily reduceé as such as vertically oscillated granular me{#b,46. Finally,
decreases. On the other hand, momentum is still conservedew forcing geometries should be explored, allowing direct
so thatu is relatively unaffected. Also, some deviation from comparison between particle simulations, continuum theo-
Enskog theory is possible due to a term in the heat fluxies, and experiments.
proportional to density gradients.

The results describgd above suggest a number pf avenues ACKNOWLEDGMENTS
for future research. First, measurements of viscosity should
be extended into the supersonic regime. Second, more exten- We deeply thank Professor Jim Jenkins for helping us
sive calculations of thermal conductivity at different densi-penetrate granular kinetic theory. This work was supported
ties, and with different spatial forcings, should be undertakerby the U.S. Department of Energy Office of Basic Energy
to ascertain the role of density gradients. Third, time-Sciences.
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